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The validity of the Stokes-Einstein �SE� relation for particle diffusion in the nano- and molecular scales has
attracted much interest, but the results in the literature are controversial. In this work, it is shown that there
exists a critical particle size where the SE relation breaks down by comparing particle transport in the macro-
and molecular scales. Using molecular-dynamics simulations, we study the critical size and find that the van
der Waals force plays an important role in particle diffusion as the particle size approaches molecular scale.
Due to the limitations of computing facilities, we could not find exactly where the critical particle size is, but
the simulation results qualitatively predict that this critical size is of a few nanometers.
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I. INTRODUCTION

Particle diffusion in fluids is an old scientific problem and
of great importance in various studies, including chemistry,
physics, material synthesis, and many areas in engineering
�1–5�. The classical Stokes-Einstein �SE� relation relates the
diffusion coefficient D of a Brownian sphere in a fluid to the
temperature T and drag coefficient � through

D =
kT

�
, �1�

where k is the Boltzmann constant and � is defined by the
Stokes law

F = − �V , �2�

where F is the drag force on the sphere moving with a rela-
tive velocity V to the fluid. For slip and stick boundary con-
ditions, �=4��R and 6��R, where � is the viscosity of the
fluid and R is the radius of the sphere. Equation �1� can be
derived from the Langevin equation if the linear relationship
in Eq. �2� holds �6�. For macroscale spherical particles, Eqs.
�1� and �2� have strong theoretical background and have been
widely accepted �3,4,7�. However, with the advances in
nanotechnology, the classical transport theories face chal-
lenges because some microscopic parameters, such as mo-
lecular interactions, which are not considered in the tradi-
tional treatments, may play important roles in particle
transport �8–10�. Although some works have shown that the
Stokes law and SE relation are valid for small solutes
�11–13�, many theoretical and experimental studies have
found that the classical theories break down in many situa-
tions in the nano- and molecular scales �9,10,14�. As will be
discussed later, there exists a critical value in the nanometer
scale for the particle size, below which Eq. �1� becomes in-
valid. To clear up the confusions about the validity of the SE
relation, it is necessary to investigate this critical value. This
is also important for practical applications.

The validity of the SE relation for small particles has been
of interest for many years. Both numerical and experimental
works have been carried out to test the applicability of the
classical transport theories to particles in the nano and mo-
lecular scales �11–13,15–25�. Experimentally it is difficult to
investigate the effects of microparameters on the particle dif-

fusion. Most of the previous works employ the method of
molecular-dynamics �MD� simulation because it provides a
flexible way to change the particle size, mass, and particle-
fluid interactions. However, the results appear to be contro-
versial due to the difference in the simulation models. In
most of the simulations, the particles do not have internal
structures and the thermal vibrations of constituent atoms are
not involved �15,16,19–24�. It has been shown that the ther-
mal motion of the atoms in the particle affects the energy
accommodation of the particle and is the major reason for
fluid adsorption on the particle surface �8�, which may lead
to stick boundary conditions. Therefore, it is inappropriate to
study nanoparticle transport by treating the particle as a hard
sphere. In some other works, the internal structures of the
particle are considered, but there are still discrepancies in the
results �13,18�. This might be caused by different values of
certain parameters used in the simulations. It is also noted
that in the previous simulations, the effects of finite system
size on the particle diffusivity are not considered. Hence, the
validity of the SE relation in the nano- and molecular scales
requires further investigations.

In this work, we show that there exists a critical size for
the particle, above which Eq. �1� is valid, i.e., the diffusivity
of a particle only depends on the viscosity of the fluid and
the particle size given the temperature. When the particle
size is smaller than this critical value, the van der Waals
force tends to be important and has to be considered in un-
derstanding the particle transport in liquids. We shall focus
our attention on the qualitative existence and prediction
rather than the quantitative evaluation of the critical size.
Furthermore, we only consider the particle transport in
simple fluids because the breakdown of the classical trans-
port theories in complex fluids, such as polymeric liquids, is
caused by the remarkable change in the physical properties
of the fluids instead of the van der Waals force �24,25�. Due
to the limitations of the computing facilities, we cannot find
the exact critical size, but detailed MD simulations indicate
that this critical size is of a few nanometers.

II. EXISTENCE OF CRITICAL PARTICLE SIZE

Gas kinetic theory predicts that the van der Waals force is
critical for nanoparticle transport in gases �9�. For particle
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transport in liquids, the van der Waals force may also play
important roles when the particle size is in the nano- or
smaller scale. This can be indicated by comparing the two
limiting cases: macroparticle transport and molecular diffu-
sion. For a macroparticle moving in a liquid, the diffusivity
of the particle is given by the SE relation, i.e., it depends on
the particle size R and fluid viscosity � only given the tem-
perature. However, if the particle size shrinks down to mo-
lecular scale, the diffusion coefficient of the particle or mol-
ecule cannot be determined by the particle size and fluid
viscosity without knowing the material of the particle. For
example, the size ratio of Kr to Ar is about 1.05 �26�, but the
diffusion coefficient of Kr is about 3 times larger than that of
Ar in oil �27�. In the molecular scale, some microparameters,
such as the particle-fluid interaction parameters, may domi-
nate and affect the particle dynamics. These two limiting
cases indicate that the diffusivity converges from micropa-
rameters dependence to the SE relation when the particle size
changes from molecular to macroscales. Equivalently, it can
be argued that there exists a critical particle size between the
molecular and macroscales, below which the microparam-
eters start to play a role and the SE relation generally be-
comes invalid.

Experimentally, it is difficult to find the critical particle
size. However, based on the theoretical analysis of particle
dynamics in rarefied gases �9�, it is possible to roughly esti-
mate where the critical size is without intensive explorations.
For particle transport in rarefied gases, gas kinetic theory
shows that the van der Waals force is inconsequential when
the particle is larger than �30 nm in diameter �9�. For gas-
particle interactions, the collisions between the gas mol-
ecules and particle dominate the momentum transfer and the
particle dynamics. For particle transport in liquids, however,
it is inappropriate to account for the momentum transfer by
liquid-particle collisions because the collisions are greatly
affected by the closely packed liquid molecules in the neigh-
borhood. In this case, the transport properties of the particle
are determined by the viscosity of the liquid and the van der
Waals force should be much less important than the cases of
particle motion in gases. Therefore, the critical size for par-
ticle transport in liquids should be much smaller than 30 nm.
If so, molecular-dynamics simulations can be used to calcu-
late the diffusion coefficient of nanoparticles and sub-
nanoclusters in liquids to generally predict the critical size.

III. SIMULATION METHODS

In a typical MD simulation system considered in this
work, a solid particle is diffusing in a cubic simulation box,
which is filled with liquid molecules. The diffusion coeffi-
cient of the particle is measured as the particle size is varied.
The liquid is described by the Lennard-Jones �LJ� 12–6 po-
tential function U�r�=4���� /r�12− �� /r�6�, where r is the
separation between a pair of molecules, � is the collision
diameter, and � is the binding energy. The values for � and �
are set to be 3.395 Å and 116.8 K, which correspond to Ar
�28�. The solid particle is initially constructed by keeping all
the atoms in a sphere of radius R from a face-centered cubic
structure with lattice constant equal to 4.08 Å, which corre-

sponds to Ag. To consider the thermal motion of the atoms in
the particle, a potential function is needed to calculate the
interatomic interactions. The LJ potential function can be an
option. It is simple and less time consuming. Another poten-
tial is the tight-binding potential function �8,29�, which has
been well tested and widely accepted for some transition
metals, such as Ag and Au. It works well for considering the
thermal vibrations of the atoms in the particle �8,30�. In par-
ticular, this potential can prevent the nanoparticles or clusters
from being dissolved in the fluid if the temperature is not
very high. To catch the fundamental physics taking place at
the fluid-wall interface, we choose the tight-binding potential
to model the solid particle. The interactions between the liq-
uid molecules and particle atoms are also calculated through
the LJ potential. To study the material dependence of the
diffusion coefficient, the liquid-particle binding energy �LP is
artificially changed with a wide range while �LP is chosen to
be the same as that for Ar-Ar interaction. The mass of the
particle atoms is set to be the same as that of Ar. The poten-
tial is truncated at 10.21 Å and Newton’s equations are in-
tegrated with Beeman’s algorithm �8�

ri+1 = ri + vi�t + ��t2/6��4ai − ai−1�
vi+1 = vi + ��t/6��2ai+1 + 5ai − ai−1� ,

�3�

where r, v, and a are the position, velocity, and acceleration
vectors, �t is the time step, and the subscripts denote the
integration steps. The time step is equal to 0.5 fs, which is
sufficiently small such that the total energy of the system is
conserved. The temperature of the system is 94.4 K to make
sure that Ar is in liquid state. The basic units of length, mass,
and energy are set to be angstrom, the mass of one Ar mol-
ecule, and eV, respectively. Periodic boundary conditions
�PBCs� are employed in all the directions. To reduce the
effect of the system size on the measurement of the particle
diffusivity, the side length of the cubic simulation systems is
chosen to be 5–10 times the particle diameter, depending on
the particle size. This will be discussed in details later.

A. Liquid viscosity

Before measuring the particle diffusivity, the viscosity of
the liquid is calculated without the solid particle in the sys-
tem. The viscosity is evaluated by the Green-Kubo formula
�31�

� =
1

∀kT
�

0

�

�Jxy�0� · Jxy�t��dt , �4�

where ∀ is the volume, � · � denotes the ensemble average,
and Jxy is the x-y component stress tensor given by

Jxy = 	
i=1

N

mivi
xvi

y − 	
i=1

N

	
j�i

N

rij
x �U

�rij
y , �5�

where N, m, and v are the total number, mass, and velocity of
liquid molecules and i and j are the indices of the molecules.
At 94.4 K, the viscosity of Ar obtained from MD simulations
is �=2.13	0.12
10−4 Pa s, which is in good agreement
with experiments and some other MD simulations �28,32�.
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B. Particle size and diffusivity

The MD simulation systems involve a large number of
liquid molecules and particle atoms. Numerically, it can be
very expensive if the particle size is large, considering that
the simulation box has to be much larger than the particle
size. In this work, the largest particle is about 5 nm in diam-
eter, which is quite spherical. The smallest particle only con-
tains three atoms, which actually is a cluster and cannot be
treated as a sphere. For such small particles or clusters, the
hydrodynamic radius RH is more appropriate than the radius
R used to construct the particle in the simulations. The hy-
drodynamic radius RH is related to the gyration radius RG of
the particle, where RH and RG are defined through 1 /RH

= �	i�j1 /rij� /Np
2 and RG

2 = �	i=1
Np �ri− r̄�2� /Np, with rij being the

distance between a pair of particle atoms, r̄ the mean posi-
tion, and Np the number of atoms in the particle �33,34�.
Since the constituent atoms of the solid particle also has a
size, which is usually thought of as the collision diameter �
in the LJ potential for liquid-particle interaction, the hydro-
dynamic radius RH should be larger than R for relatively big
particles, as shown in Fig. 1. Depending on the structure of
the particles or clusters, the ratio of RH /RG varies with the
upper limit equal to RH=1.29RG �33�. The particle radii
based on the various definitions are shown in Table I. By
comparing the radii to R, it is seen that RH=1.29RG seems to
give a reasonable prediction for the particle size. Neverthe-
less, we will present the diffusivity by using different particle

radii to show that the definition of particle size does not
affect the qualitative prediction of the critical particle size.

The diffusion coefficient of the particles is calculated by

D = lim
t→�

���r�2�/6t , �6�

where ���r�2� is the mean-square displacement �MSD� of the
particle and t is the time. In the simulations, the MSD is
obtained as a function of time and the diffusivity is obtained
by linearly fitting the MSD.

The PBCs in all the directions used in the simulations are
equivalent to generate an infinite system, which is formed by
replicating the simulation cell through rigid translations. In
this infinite system, there are many solid particles, which are
interacting with each another. To reduce the hydrodynamic
interactions between these replicas of the particle, the simu-
lation box should be much larger than the particle size. To
understand the error caused by the finite system size, we
calculate the diffusivity of a particle with diameter d=2R
=1 nm by changing the length L of the simulation system.
Figure 2 shows the diffusion coefficient D of the particle as
a function of 1 /L. The liquid-particle binding energy �LP
=233.6 K. It is seen that the diffusivity scales linearly with
1 /L �D=3.3−2.3kT / �6��L��. This is in good agreement
with the previous work that D=D0−2.837kT / �6��L�, where
D0 is the diffusivity predicted by the SE relation �35–37�.

R

RG

RH

FIG. 1. Schematic relationships of radius R, used for construct-
ing the particle, gyration radius RG, and hydrodynamic radius RH

for relatively large and spherical particles.

TABLE I. Geometric parameters and the number of molecules of the simulation systems. Np: number of
atoms in the particle; R: radius used for constructing the particles; RG and RH: gyration and hydrodynamic
radii; L /d: simulation box to particle size ratio; N: number of fluid molecules in the system.

Np

R
�nm�

RG

�nm�
RH

�nm�
1.29RG

�nm� L /d N

3925 2.50 1.95 2.11 2.52 5 316200

887 1.50 1.18 1.29 1.52 5 62000

249 1.00 0.77 0.86 1.00 8 78500

43 0.50 0.42 0.51 0.55 10 19600

30 0.38 0.47 0.49 �10 19600

10 0.26 0.37 0.33 �10 8750

3 0.15 0.25 0.19 �10 3957
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FIG. 2. The size effect of the simulation systems on the particle
diffusivity. Solid line is the linear fit to the MD results.
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C. Results and discussions

In the simulations, L /d is relatively large for particles of
d�2 nm �d=2R�. For particles of d=3 and 5 nm, L /d is set
to be 5 because the systems are quite large and numerically
very expensive. The values of L /d and the number of fluid
molecules in the corresponding simulation system are pro-
vided in Table I. As shown in Table I, there are over 300 000
fluid molecules in the simulation system for the particle of
R=2.5 nm. Such a big system is beyond the capability of our
computing facility �a cluster of 20 duo-core computers of 3.0
GHz� �38�. Depending on the size of the particle, 50–200
simulations with different initial conditions are used to ob-
tain the MSD in Eq. �6�. In all the simulations, the smallest
system has a side length of 6 nm containing 3957 fluid mol-
ecules, which is sufficiently large such that the system size
has little to no effect on the viscosity of the fluid �39�.

To consider the effect of van der Waals force on the par-
ticle diffusion, the liquid-particle binding energy �LP is var-
ied by a factor of 10, from 58.4 to 584 K, which covers many
popular fluid-solid interactions �10,26,40�. Figure 3 depicts
the diffusion coefficient D as a function of 1 /RH with RH
defined through RH=1.29RG and 1 /RH= �	i�j1 /rij� /Np

2 in
Figs. 3�a� and 3�b�, respectively. The diffusivities have been
corrected by the analytical factor, �= �1−2.837 R /L�−1, to
account for the effect of system size on the particle diffusion.
It is seen that the diffusion coefficient grows increasingly
sensitive to the van der Waals force as the particle size ap-

proaches molecular scale. For relatively large particles, the
van der Waals force becomes unimportant and the diffusion
coefficients for all the binding energies converge to the pre-
diction of the SE relation. It is unfortunate that we could not
go further to larger particles due to the limitations of our
computational facilities. Nevertheless, the trend in Fig. 3 in-
dicates that the diffusion coefficient will be in good agree-
ment with the SE relation if the particle size is increased
further regardless of the way how the particle size is esti-
mated and it is safe to predict that this critical particle size is
of a few nanometers.

It is also noted that when the liquid-particle interaction is
weak, where the slip boundary condition applies �41�, the
diffusion coefficients generally agree well with the classical
theory regardless of the particle size, as the case of �LP
=58.4 K in Fig. 3�a�. For strong binding energies, the SE
relation overestimates the diffusion coefficient. This explains
why the results in the literature are controversial �13,20�. For
fluid-solid interactions, it is well known that strong interac-
tions may cause fluid adsorption on the solid surface. The
adsorbed fluid molecules can change the particle size and
therefore the particle diffusivity. To understand the layering
of liquid molecules on the particles, we identify some liquid
molecules around a particle at a certain time and then follow
these molecules for a while to find out whether these mol-
ecules are really adsorbed by the particle or not. Figure 4
demonstrates the snapshots of these molecules around the
particle of R=2.5 nm. In Figs. 4�a� and 4�b�, the liquid-
particle binding energy �LP=58.4 K. Figure 4�a� shows the
initial positions of the particle and some liquid molecules in
the neighborhood and Fig. 4�b� records the positions of these
liquid molecules after 200 ps. It is found that the liquid mol-
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FIG. 3. �Color online� The diffusion coefficient as a function of
1 /RH for different liquid-particle binding energy �LP. In �a�, RH

=1.29RG; in �b�, RH is defined through 1 /RH= �	i�j1 /rij� /Np
2. The

inset in �a� is the blowup for relatively large particles.

FIG. 4. �Color online� Snapshots of liquid molecules �green�
around the particle �red� of R=2.5 nm. The binding energy �LP

=58.4 K in �a� and �b� and �LP=584 K in �c� and �d�. �a� and �c�
are the positions of some liquid molecules around the particle at a
certain time. �b� and �d� are the positions of the same molecules in
�a� and �c� after 200 ps.
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ecules are not really adsorbed by the particle for such small
binding energy. However, similar snapshots for �LP=584 K
confirm the adsorption phenomena, as illustrated in Figs.
4�c� and 4�d�.

The layering of liquid molecules on the particle surface
increases the particle size and reduces the diffusion coeffi-
cient of the particle. In this sense, the small diffusivity cal-
culated from MD simulations for large binding energies is, to
some extent, caused by the adsorbed liquid molecules. How-
ever, the adsorbed molecules are not the major contribution
to the reduction of the particle diffusivity. This can be con-
firmed by the diffusivity of the particle of R=1 nm. If we
assume that the particle is completely covered by a layer of
liquid molecules for the strongest binding energy and the
particle radius changes from 1 to 1.34 nm �the increment of
0.34 nm is the diameter of the liquid molecules�, the diffu-
sion coefficient of the particle will be reduced by 34%,
which cannot compensate the large difference between the
MD simulations and SE relation, as shown in Fig. 3. There-
fore, the fluid adsorption is not the major reason that leads to
the reduction of particle diffusivity. This indicates that the
intermolecular interactions, such as the van der Waals force,
play important roles for small particle diffusion.

In the simulations, the thermal vibration of the atoms in
the particle is considered, which is important for fluid-wall
interaction �42�. To confirm this, we have calculated the dif-
fusivities of rigid particles. For �LP=116.8 and 548 K, the
diffusion coefficient of R=0.5 nm particle is 1.49	0.18

10−10 and 1.73	0.16
10−10 m2 /s, respectively, if the
particle is considered as a rigid body, while the diffusivity is
3.81	0.38
10−10 and 2.26	0.07
10−10 m2 /s when the
internal degrees of freedom are considered.

It is worth mentioning that our attention is on the critical
particle size, where the SE relation breaks down. The quan-
titative dependence of the particle diffusivity on certain pa-
rameters is not in the scope of current work. Although we
could not find exactly where the critical particle size is due to
the restrictions of computing facilities, the simulation results
qualitatively predict that this critical size is of a few nanom-
eters.
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